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ABSTRACT

Facies classification of image logs plays a vital role in reser-
voir characterization, especially in the heterogeneous and aniso-
tropic carbonate formations of the Brazilian presalt region.
Although manual classification remains the industry standard
for handling the complexity and diversity of image logs, it
has the notable disadvantages of being time consuming, labor
intensive, subjective, and nonrepeatable. Recent advancements
in machine learning offer promising solutions for automation
and acceleration. However, previous attempts to train deep neu-
ral networks for facies identification have struggled to general-
ize to new data due to insufficient labeled data and the inherent
intricacy of image logs. In addition, human errors in manual
labels further hinder the performance of trained models.
To overcome these challenges, we develop adopting the

state-of-the-art SwinV2-Unet to provide depthwise facies clas-
sification for Brazilian presalt acoustic image logs. The training
process incorporates transfer learning to mitigate overfitting and
confident learning to address label errors. Through a k-fold
cross-validation experiment, with each fold spanning more than
350 m, we achieve an impressive macro F1 score of 0.90 for
out-of-sample predictions. This significantly surpasses the
previous model modified from the widely recognized U-Net,
which provides a macro F1 score of 0.68. These findings high-
light the effectiveness of the used enhancements, including the
adoption of an improved neural network and an enhanced train-
ing strategy. Moreover, our SwinV2-Unet enables a highly
efficient and accurate facies analysis of the complex yet inform-
ative image logs, significantly advancing our understanding of
hydrocarbon reservoirs, saving human effort, and improving
productivity.

INTRODUCTION

Borehole imaging is a rapidly developing well-logging technique
that offers unrolled, high-resolution images of the borehole walls,
known as image logs. These logs provide detailed visual informa-
tion about the structural, textural, and lithologic properties of
subsurface formations, serving various purposes such as fracture
identification, in situ stress regime and stratigraphy analysis, and
borehole stability control (Prensky, 1999). Ultimately, they contrib-
ute to enhanced reservoir characterization, particularly in assessing
permeability, porosity, and lithology, which are crucial factors as-
sociated with hydrocarbon abundance and extraction feasibility
within the reservoir (Lai et al., 2018).

According to Akbar et al. (2000), carbonate reservoirs, which
comprise more than 60% of the global oil reserves and 40% of
the global gas reserves, stand out as one of the most abundant hy-
drocarbon reservoirs worldwide. This study focuses on the carbon-
ate reservoirs located in the Brazilian presalt region, which account
for 74.88% of the Brazilian national oil equivalent as of April 2023
(ANP, 2023). These reservoirs are situated within a highly complex
geologic context, buried beneath a thick salt layer, which presents
significant challenges for large-scale production (Branco and de
Sant'Anna Pizarro, 2012; da Costa Fraga et al., 2015). Conse-
quently, accurate and detailed characterization of these reservoirs
is of the utmost importance for oil and gas production in this region.
However, the carbonate reservoirs in this area exhibit notable
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heterogeneity and anisotropy, posing exceptional challenges in

accurately estimating rock properties.
With recent advancements in borehole imaging, image logs have

emerged as a vital and promising technique for characterizing the
sophisticated nature of the Brazilian presalt carbonate reservoirs.
Specifically, the establishment of image log facies, based on char-
acteristics such as dip type, dip pattern, and color scheme, allows for
the translation of image logs into various rock types. These rock
types exhibit distinct sedimentary and structural features, including
depositional microfacies, sedimentary structures, bedding sequen-
ces, vugs, faults, fractures, and paleocurrent directions (Donselaar
and Schmidt, 2005; Wilson et al., 2013; Muniz and Bosence, 2015).
Through calibration with cores and conventional logs, the image log
facies and their stacking patterns can be further interpreted as lith-
ofacies associations closely tied to specific petrophysical properties,
such as permeability, stiffness, and anisotropy (Lai et al., 2018).
Therefore, the classification of the image log facies provides a de-
tailed depiction of the distribution of the rock types and their unique
depositional, structural, and petrophysical properties along the well
trajectory. This sheds light on the heterogeneity and anisotropy of
the carbonate reservoirs in close proximity to the wellbore, contrib-
uting significantly to our understanding of these complex geologic
formations.
Despite the widespread belief among geologists in the oil and gas

industry that borehole image logs hold valuable information about
crucial petrophysical properties, such as permeability, porosity, and
lithofacies, there is currently no established automated procedure to
objectively, reliably, and quantitatively predict these properties from
image logs. The prevailing industry practice still relies on manual
interpretation, wherein geologists subjectively categorize image
logs into different facies and offer qualitative facies descriptions
encompassing details about lithology, sedimentary textures, paleo-
flow directions, and the processes of sedimentation and diagenesis
(Muniz and Bosence, 2015; Lai et al., 2018). However, manual in-
terpretation has significant limitations due to the large amount of
time and workforce it requires, as well as the subjectivity and lack
of repeatability in its results. Therefore, the automation of the image
log interpretation process is urgent and critical.
Inspired by the remarkable self-learning capacity of machine-

learning (ML) models, numerous researchers have used ML tech-
niques for automatic image log interpretation. One approach is to
automate the classification process using unsupervised learning.
The general workflow involves extracting representative features
from the image logs using conventional image processing tech-
niques and then using unsupervised learning algorithms, such as
the mean-shift algorithm and self-organizing map, to separate the
extracted features into different classes (Hall et al., 1996; Ye
et al., 1998; Al-Sit et al., 2015; Yang et al., 2020). Notably,
Lima et al. (2019) propose an unsupervised feature extraction ap-
proach in which an autoencoder network is trained to automatically
encode image data into low-dimensional high-level representations.
Although these methods eliminate the need for laborious and time-
consuming manual labeling, the resulting class separation may be
vague or not align with specific requirements due to the absence of
guidance in clustering. To address this issue and incorporate do-
main-specific knowledge, various deep neural networks (DNNs)
have been trained with manual or simulated labels to perform
various classification tasks, such as lithology detection (Valentín
et al., 2019), fracture identification (Gupta et al., 2019), breakout

detection (Dias et al., 2020), and vuggy facies recognition (Jiang
et al., 2021) from image logs. However, a common limitation
of the published DNN models is their reliance on synthetic or
high-quality image logs with minimal artifacts and noise, raising
concerns about their generalizability to new field data. Furthermore,
the performance of the DNNs, particularly in terms of generalizabil-
ity and accuracy, is significantly constrained by the quantity and
quality of the available labels.
As mentioned previously, automatic classification approaches

have been developed for image logs using unsupervised or super-
vised learning. The separate classes represent facies in a broad
sense, which are distinct rock bodies exhibiting a unique appear-
ance, composition, and texture (Parker, 1984). In addition to facies
identification from borehole image logs, extensive studies have
been conducted to automatically detect facies from conventional
petrophysical logs, such as the porosity, density, and gamma-ray
logs, using various ML techniques (Dubois et al., 2007; Hall,
2016; Imamverdiyev and Sukhostat, 2019). Because borehole im-
age logs provide detailed textural information at a millimeter res-
olution, they have proven to be a valuable complementary data set
for facies analysis, especially in complex geologic settings (Basu
et al., 2002; Chai et al., 2009). A significant breakthrough in this
field was achieved by You et al. (2023), who introduce the first
DNN model, specifically a modified U-Net (Ronneberger et al.,
2015), for depthwise facies classification of the acoustic image logs
from the Brazilian presalt region. For convenience, we will refer to
this modified U-Net as Facies-Unet in the following discussion. The
researchers carefully defined the facies, taking into account the lam-
ination characteristics, the presence of bioclasts, and the impact of
artifacts. Following the definition, a set of manually labeled field
data from eight wells and a substantial number of synthetic image
patches were prepared for training. The continuous field data were
divided into overlapping patches using a 1.3 m sliding window
along the depth direction, with a step size of 0.325 m. To avoid
data leakage, two 3.6 m continuous sections were extracted from
each well, forming an independent 57.6 m test set. The remaining
image patches from the data set were split into training and valida-
tion sets with a ratio of 8:2. Remarkably, the Facies-Unet achieved
an accuracy of 77% for the test set, demonstrating its effectiveness
in handling the complex and diverse data set from the investigated
region. Trained with manual labels, the Facies-Unet outperformed
manual labeling by achieving higher levels of efficiency, resolution,
and consistency. However, the researchers observed a slight over-
fitting issue due to the limited availability of labeled field data and
the complexity and diversity of the image logs from that region.
They commented that the 57.6 m test set was not sufficient to con-
firm the model’s generalizability. Moreover, the presence of inevi-
table human errors and inconsistencies in the manual labels
hampered further improvements in the model’s performance.
To address the limitations identified in the work by You et al.

(2023), we propose a series of enhancements to improve the clas-
sification performance. First, we replace the U-Net architecture with
a state-of-the-art neural network called SwinV2-Unet (Liu et al.,
2021, 2022; Cao et al., 2022). The SwinV2-Unet is a pure trans-
former-based U-shaped model that integrates the advanced multi-
head self-attention mechanisms (Vaswani et al., 2017) with the
powerful U-shaped structure and skip-connection operations of
the U-Net. This combination enables the SwinV2-Unet to learn
local-global semantic features efficiently and has demonstrated
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exceptional performance in multiorgan and cardiac image segmen-
tation tasks (Cao et al., 2022). The effectiveness of transformers
extends to various geophysical problems as well. For instance,
Yang et al. (2023) create a multitask model based on foundational
transformer and convolutional blocks, producing excellent results in
simultaneously predicting the relative geologic time, horizons, and
faults from seismic data. Second, we propose a refined training pro-
cedure that combines transfer learning and confident learning (CL)
algorithms (Northcutt et al., 2021). Transfer learning is used to mit-
igate the overfitting issue by leveraging the pretrained weights of
the Swin Transformer V2 model on a large image database, the Im-
ageNet-1K (Deng et al., 2009). In addition, the CL algorithm is used
to identify and prune label errors by estimating the joint distribution
between the noisy manual labels and actual labels. To assess the
generalizability of our model in an unbiased manner, we conduct
a k-fold cross-validation experiment, in which the labeled data
set is divided into fivefold, and each fold is used as the test set
in turn during the five iterations. The lengths of the test folds vary
between 366.6 and 374.4 m. To ensure a fair comparison, we also
perform the same k-fold cross-validation experiment on the Facies-
Unet. Our new model achieves a high macro F1 score of 0.90 for the
out-of-sample predictions, surpassing the macro F1 score of 0.68
obtained by the Facies-Unet. This notable improvement highlights
the enhanced accuracy and generalizability of our new model,
which greatly contributes to efficient and accurate facies analysis
in the geologically complex Brazilian presalt region.

IMAGE LOG DATA AND MANUAL LABELS

Acoustic imaging tools use a rotating transducer positioned at the
center of the well to acquire unrolled high-resolution images of the
entire borehole wall. The transducer emits ultrasonic pulses contin-
uously and records the pulses reflected by the borehole wall. The
amplitudes of the reflected pulses are then visualized as two types of
borehole images. The first type is the static image, wherein the pixel
values are normalized over the entire logged interval, effectively
portraying the large-scale variations associated with lithologic
changes and geologic events. The second type is the dynamic im-
age, wherein the pixel values are normalized within a sliding win-
dow, revealing finer texture and fabric details with enhanced color
contrast. Overall, both types of image logs are essential in providing
a comprehensive representation of the downhole formations.
This study builds upon the previous work by You et al. (2023) on

the deep-learning-assisted classification of acoustic image logs, with
a continued focus on the same data set obtained from the Brazilian
presalt oil fields. These offshore oil reserves predominantly comprise
carbonate reservoirs. The presalt layer spans from the coast of Espír-
ito Santo to the coast of Santa Catarina, lying beneath a salt layer that
is approximately 2000m thick. Above the salt layer, there are postsalt
sediments exceeding 2000 m in thickness. Since Petrobras’ initial
exploration in 2006, the presalt oil reserves have attracted substantial
investments from major oil companies due to their abundant and
high-quality nature. However, drilling through the extensive postsalt
sediments and the salt layer under the deep sea is a highly expensive
endeavor. Hence, it is essential to enhance our understanding of the
geologically complex carbonate reservoirs in this region.
High-resolution borehole image logs play a critical role in im-

proving reservoir characterization as they provide substantial geo-
logic information. One prominent feature observed in image logs
is the presence of horizontal sinusoidal curves of a single period,

indicating planar geologic structures such as fractures and beddings
intersecting the wellbore. Carbonate reservoirs from the Brazilian
presalt region, in particular, exhibit a wider range of features asso-
ciated with karst processes and biological activities. For example,
vugs are visible as varying sized voids in the image logs, whereas
stromatolites, layered deposits of limestone, display concentric
layering patterns. In addition, shrub imprints formed during the dep-
osition process are widespread in carbonate reservoirs, appearing as
large-scale dendritic patterns encompassing multiple layers or
small-scale v-shape patterns within layers. Apart from these geo-
logic features, image logs also contain drilling-related artifacts, such
as tool scratching and spiraling. Among the various artifacts, bore-
hole breakouts, characterized as pairs of near-vertical irregularities
spaced 180° apart in azimuth, are of particular interest because they
are valuable for in situ stress regime analysis.
You et al. (2023) define five mutually exclusive facies for image

logs from the Brazilian presalt region based on the most represen-
tative features observed, including the geometric attributes of the
fine strata (mainly parallelism and continuity) and the presence of
shrub imprints. The definition of the five facies is listed as follows:

• Facies 0: parallel thin laminations with branching shrub
imprints,

• Facies 1: parallel continuous or discontinuous laminations
across the wellbore without shrubs,

• Facies 2: faint incomplete laminations or transparent beds,
• Facies 3: chaotic fabrics with no clear laminations,
• Facies 4: strong artifacts covering all underlying geologic

features.

According to the well-established classification system for carbon-
ate rocks by Dunham (1962), the dominant rock types shift from
boundstone to grainstone to mudstone from facies 0 to 2. Specifically,
boundstone refers to rocks where the original sediments are tightly
bounded during deposition, grainstone has a grain-supported fabric
and lacks mud content, and mudstone is mud supported and lacks
grain contents. Moreover, facies 3 is a broad chaotic class comprised
of stromatolites, breccia, conglomerates, and reworked sediments.
Because they are affected by widespread drilling artifacts, some im-
age logs may exhibit characteristic features of facies 0, 1, or 2, but
with lower certainty. They are manually classified as class 5, 6, or 7,
respectively, and are assigned a lower weight during training. How-
ever, when the artifacts become too prominent, concealing all under-
lying geologic features, these segments are classified as facies 4.
There are instances when the image logs contain intertwined features
frommultiple facies or have very low resolution, making it difficult to
classify them accurately. Such images are identified as the uncertain
class that is not classified as any facies (class 8), excluded from the
training data set, and used for blind test after the training phase. A
detailed comparison of the nine classes is shown in Table 1.
The data set investigated in this study comprises 15 wells origi-

nating from different oil fields in the Brazilian presalt region, includ-
ing the Sapinhoa, Tupi, and Iracema. These wells were imaged by
different tools, including Schlumberger’s ultrasonic borehole imager
(UBI), the ultrasonic imager tool (USIT), Halliburton’s circumferen-
tial acoustic scanning tool (CAST), and Baker Hughes’ circumferen-
tial borehole imaging log (CBIL). The image quality varies from
“good” to “not bad,” as assessed by an experienced geologist.
The WellCAD software was used to visualize and manually classify
the image logs into nine distinct classes. The manual labeling process
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for the image logs of wells 0–7 was an extensive undertaking that
spanned over a period of two months. Because manual labeling is
too time consuming, the remaining wells are left unlabeled. More
details about the wells can be found in Appendix A.

METHODOLOGY

In this paper, we propose an advanced methodology for acoustic
image log classification using deep learning. Built upon previous

work by You et al. (2023), our approach achieves significant
improvements by leveraging a superior pure transformer model
called the Swin-Unet (Cao et al., 2022) and a more effective train-
ing strategy that combines multiple advanced techniques, includ-
ing transfer learning and CL (Northcutt et al., 2021). In this
section, we provide an introduction to the architecture of our neu-
ral network and then delve into the details of the used training
strategy.

SwinV2-Unet

The Facies-Unet, introduced by You et al.
(2023), used the popular U-Net structure
(Ronneberger et al., 2015) for facies classifica-
tion, which is distinguished by its U-shaped
encoder-decoder structure and skip connections.
Although Facies-Unet performed well in facies
classification, it faces challenges in capturing
long-range semantic interactions due to the in-
trinsic locality of convolution operations, result-
ing in oversegmentation issues and the
misinterpretation of large-scale features, particu-
larly stromatolites. In contrast, transformers
(Vaswani et al., 2017), which have revolution-
ized the field of natural language processing,
can perfectly model long-range dependencies
through the multihead self-attention mechanism.
To address the inadequacy of convolutional neu-
ral networks (CNNs) in handling long-range
dependencies, researchers have explored the
adaptation of transformers for computer vision
tasks, wherein the Swin Transformer (Liu
et al., 2021) has emerged as the state-of-the-art
in numerous computer vision benchmarks. The
Swin Transformer improves computation effi-
ciency by restricting self-attention computation
to shifted windows (for additional details, refer
to Appendix B) while also enabling hierarchical
learning with multiple patch merging layers.
Subsequently, Liu et al. (2022) propose the Swin
Transformer V2 that enhances the scaling-up
capacity of the original Swin Transformer. Build-
ing upon the widely used U-Net and the cutting-
edge Swin Transformer (V1), Cao et al. (2022)
propose the Swin-Unet, which inherits the U-
Net’s structure, with all basic convolutional
blocks replaced by the Swin Transformer blocks.
With its robust local-global semantic feature
learning capability, the Swin-Unet has demon-
strated state-of-the-art performance in multior-
gan and cardiac segmentation tasks.
In this study, we customize the Swin-Unet

(Cao et al., 2022) for our purpose of depthwise
facies classification for acoustic image logs. We
name our model the SwinV2-Unet because all
the Swin Transformer blocks are upgraded to
the Swin Transformer V2 blocks. As shown
in Figure 1, the encoding path of our model is
configured as the concatenation of the convolu-
tional channel adapter and the tiny-size Swin

Table 1. A detailed description of the nine classes defined for carbonate rocks.

Classes 0–4 represent the mutually exclusive facies, classes 5–7 denote the facies with lower certainty, and class
8 corresponds to the uncertain sections.

4 You and Li



Transformer V2 model (SwinV2-T) (Liu et al., 2022), whereas the
decoding path mirrors the encoding path except for the last layer.
Our model takes static and dynamic images as input, represented by
two channels. The channel adapter expands the input data to three
channels to accommodate the three-channel input required by the
SwinV2-T model. Then, the three-channel data are partitioned into
nonoverlapping 4 × 4 pixel patches, which are subsequently trans-
formed into 1D vectors of dimension C using a linear embedding
layer. These C-dimensional features are treated as tokens, namely
the inputs to the transformer blocks. Each encoding block concludes
with a patch merging layer that reduces the
height and width of the feature maps by a factor
of two while doubling the number of channels.
Conversely, each decoding block begins with a
patch-expanding layer, which performs the in-
verse operation of the patch-merging layer.
The integration of the patch-merging and ex-
panding layers enables hierarchical analysis of
the input data, facilitating efficient local-global
feature learning. In addition, the skip connec-
tions between the encoding and decoding paths
help maintain fine-scale details that may be lost
during the encoding process. After the last de-
coding block, the tokens are mapped back to
the image domain using the reverse patch embed-
ding layer. To incorporate azimuth information
into the facies probability, we add a 2D convolu-
tional layer as the final layer of the neural net-
work. This layer has a kernel size of 1 ×W, a
stride size of one, and zero padding. The input
and output channels are set to the number of
classes (five in this study), and they are inde-
pendently connected, given that the number of
convolution groups also equals the number of
classes. This layer generates a facies probability
for each depth, presenting as a vector with a

length equal to the number of classes. The maximum element of
the estimated facies probability represents the predicted probability,
whereas the corresponding index indicates the predicted facies.

Training strategy

Transfer learning

As discussed by You et al. (2023), the image logs from the
Brazilian presalt region are highly complex and diverse, making

Table 3. Well information of the investigated data set.

Well index Field Vendor Imaging tool Image quality Label

0 Sapinhoa Schlumberger UBI Good T

1 Sapinhoa Schlumberger UBI Not bad T

2 Sapinhoa Schlumberger UBI Decent T

3 Tupi Schlumberger UBI Good T

4 Sapinhoa Halliburton CAST Decent T

5 Sapinhoa Schlumberger UBI Decent T

6 Iracema Schlumberger USIT Decent to not bad T

7 Tupi Halliburton CAST Not bad T

8 Tupi Halliburton CAST Decent F

9 Tupi Halliburton CAST Not bad F

10 Sapinhoa Halliburton CAST Not bad F

11 Iracema Baker Hughes CBIL Not bad F

12 Sapinhoa Halliburton CAST Not bad F

13 Tupi Halliburton CAST Decent F

14 Tupi Baker Hughes CBIL Not bad F

The image quality degrades from good to “decent” to not bad. In the last column, “T” denotes the manually
labeled data, whereas “F” indicates the unlabeled data.

Table 2. The results of the ablation study examining the impact of transfer learning, CL, and the mean teacher method.

Test Model
Transfer
learning Freeze GR

Trainable
weights
(million) Label

Mean
teacher
method

Initial
learning
rate

Batch
size pless certain

Training
speed

(min/epoch)

Macro
F1
score

1 SwinV2-Unet Y Y N 14.16 Raw N 0.0005 32 0.5 4.1 0.78

2 SwinV2-Unet Y N N 41.34 Raw N 0.0005 32 0.5 4.8 0.74

3 SwinV2-Unet N N N 41.34 Raw N 0.0005 32 0.5 4.8 0.70

4 Facies-Unet N N Channel 2.18 Raw N 0.0001 32 0.5 1.3 0.68

5 SwinV2-Unet Y Y N 14.16 Clean N 0.0005 32 1 4.1 0.90

6 Facies-Unet N N Channel 2.18 Clean N 0.0001 32 1 1.1 0.86

7 Facies-Unet N N N 2.18 Clean N 0.0001 32 1 1.1 0.84

8 SwinV2-Unet Y Y Channel 14.16 Raw N 0.0005 32 0.5 4.1 0.77

9 SwinV2-Unet Y Y 1D-
CNN

14.18 Raw N 0.0005 32 0.5 4.2 0.78

10 SwinV2-Unet Y Y N 14.16 Raw Y 0.0005 64 0.5 7.7 0.78

“Y” and “N” represent yes and no, respectively. As for the “gamma ray (GR)” column, N represents that GR logs are not used, “channel” represents that the GR logs are appended to
the inputs as a third channel, and “1D-CNN” represents that a model composed of four 1D convolutional layers is used to process GR logs in parallel to the SwinV2-Unet. The clean
labels used in test 5 are obtained by applying CL to the initial out-of-sample predictions given by test 1, whereas tests 6 and 7 use clean labels from test 4 predictions. When using the
mean teacher method, each batch is composed of 32 labeled samples and 32 unlabeled samples. The macro F1 score is the average F1 score across five classes in out-of-sample
predictions during k-fold cross validation.
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the manual labeling of only eight wells inadequate for effectively
training a DNN with robust generalizability. Furthermore, the
SwinV2-Unet, being a large model with approximately 42 million
trainable parameters, is prone to overfitting when trained on small
annotated data sets comprising only a few hundred thousand images

(Oquab et al., 2014). Therefore, it is imperative to improve the
training strategy to address the overfitting challenge.
Transfer learning has emerged as a prominent technique to over-

come the scarcity of labeled data and accelerate training. Extensive
research has demonstrated the effectiveness of pretraining models

on large data sets such as the ImageNet (Deng
et al., 2009) and subsequently fine tuning them
on smaller task-specific data sets. Despite the
variations in data statistics and tasks, these stud-
ies have consistently shown substantial perfor-
mance improvements (Oquab et al., 2014;
Yosinski et al., 2014). In view of the proven suc-
cess of pretraining in diverse computer vision
tasks, we adopt this technique for our model as
well. Specifically, we initialize the encoding
blocks and the bottleneck of our model using the
pretrained SwinV2-T model on the ImageNet-1K
published by Liu et al. (2022), whereas the other
blocks are initialized randomly. The weights
loaded from the pretrained model are kept frozen
during training. The reason to freeze them will be
explained in the “Discussion” section.

Confident learning

In addition to the scarcity of labeled data, the
quality of the labels plays a crucial role in ML per-
formance. Our manual labels contain inevitable
human errors and inconsistencies, in spite of the
extensive time and effort we have invested in them.
Northcutt et al. (2021) propose a generalized CL
framework to identify and eliminate label errors,
ultimately revealing the “true” labels from noisy
data. This CL framework has been demonstrated
to be effective through theoretical analysis and ex-
perimental validation. It is performed in four steps,
which are described as follows.
The first step involves training the initial DNN

on the noisy original data set using the k-fold
cross-validation algorithm (Hastie et al., 2009)
to generate out-of-sample predictions for all sam-
ples. To use the k-fold cross-validation algorithm,
the entire data set is evenly split into k-folds. Then,
the same DNN is trained k times, with each fold
used as the test set in rotation, whereas the remain-
ing folds serve as the training set. The DNNs pre-
dictions for the test set are the out-of-sample
predictions. This approach also provides an un-
biased evaluation of the model’s generalizability,
which is crucial when dealing with small and
highly heterogeneous data sets such as the Brazil-
ian presalt data used in this study.
The second step is to estimate the joint distri-

bution between the observed noisy labels (or the
manual labels), denoted as ~y, and the true labels,
denoted as y�, based on out-of-sample predic-
tions. We use pðy ¼ j; xÞ to represent the out-
of-sample predictions, specifically the probabil-
ity of a sample x belonging to class j as predicted
by the DNN. Moreover, X̂~y¼i;y�¼j denotes the

Figure 1. The architecture of our SwinV2-Unet, which is composed of the channel
adapter, green encoding blocks, orange bottleneck, blue decoding blocks, and red skip
connection operations. The representation shape of each level is put between the cor-
responding dashed gray lines. The image height, width, and embedding dimension of the
patch embedding layer are denoted as H, W, and C, respectively. The number of classes
is represented with Nc. The convolutional channel adapter is composed of two 2D con-
volutional layers: the first layer has a kernel size of one, a stride size of one, zero pad-
ding, and 32 output channels; the second layer has a kernel size of one, a stride size of
one, zero padding, and three output channels. The configuration of the final output layer
is illustrated at the bottom, with features and filters for different classes represented in
distinct colors. Each input channel is convolved with its own filter of size 1 ×W, gen-
erating a logit at each row. The softmax function is then applied along the channel di-
mension (Nc) to obtain the probability for each class at every row.
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estimated subset of the samples that are labeled as class i but with a
sufficiently high probability (pðy ¼ j; xÞ) to be considered as be-
longing to class j. Specifically, X̂~y¼i;y�¼j is estimated under the con-
straint of a per-class threshold tl:

X̂ ~y¼i;y�¼j ¼
�
x ∈ X ~y¼i∶j ¼ argmax

l∈½m�∶pðy¼l;xÞ≥tl
pðy ¼ l; xÞ

�
;

(1)

where X~y¼i denotes the subset of samples labeled as class i and ½m�
represents the list of all classes. The threshold tl is designed as the
average self-confidence for each class:

tl ¼
1

jX~y¼lj
X

x∈X~y¼l

pðy ¼ l; xÞ: (2)

Essentially, the threshold tl is proportional to the confidence of the
DNN for each class, thereby enhancing CL robustness to the class
imbalance and uneven class probability distribution. Next, a confi-
dent joint matrix C~y;y� can be derived, where the entry C~y¼i;y�¼j

represents the number of samples labeled as class i but estimated
as class j (jX̂~y¼i;y�¼jj). The joint distributionQ~y;y� is derived by nor-
malizing C~y;y� to match the observed marginal distribution of ~y and
ensure Q~y;y� sums to one. The diagonal entries of Q~y¼y� present the
correct rates of the manual labels, whereas the off-diagonal entries
denote their asymmetric noise rates.
The third step is to rank and prune the label errors or data clean-

ing. Northcutt et al. (2021) introduce five rank-and-prune ap-
proaches. We selected the most robust one in our experiments,
which is to prune by noise rate. For each off-diagonal entry in
Q~y¼i;y�¼jði ≠ jÞ, we prune n · Q~y¼i;y�¼j samples that are labeled
as class i with max margin pðy ¼ j; xÞ − pðy ¼ i; xÞ, with n denot-
ing the total number of samples in the data set. The preserved sam-
ples are considered to be correctly labeled, forming a clean data set.
The last step is to train the DNN using the cleaned data set. The

k-fold cross-validation algorithm is used in this step to assess the
generalizability of the ML model more accurately.

Training workflow

Based on the mentioned training strategies, we propose a training
workflow for the complex Brazilian presalt data with limited noisy
manual labels. The first step is to prepare the training data. As de-
scribed previously, we have labeled eight wells by hand. The la-
beled wells contain uncertain sections marked as class 8, which
are excluded from the labeled data set. Because image logs are usu-
ally a few hundred meters long, we need to split them into small
patches to let the neural network analyze them locally. On the
one hand, we expect that the image patches partially overlap each
other to avoid boundary effects as well as augment the training data.
On the other hand, we need to avoid data leakage from the test set to
the training set in the presence of overlapping patches. To balance
the two aspects, we propose a two-step image log splitting work-
flow for the labeled data set from wells 0 to 7. First, the continuous
image logs are split into 3.9 m nonoverlapping segments, which are
split into fivefold evenly and randomly for the k-fold cross-valida-
tion algorithms. Specifically, folds 0–3 consist of 96 segments each,
measuring 374.4 m in length, whereas fold 4 is slightly smaller,
containing 94 segments with a length of 366.6 m. It is worth noting

that the facies distribution varies slightly among the folds, with
facies 4 being the least represented. Further information about
the fivefold can be found in Table 4. In the second step, each seg-
ment is split into overlapping patches with a 1.3 m sliding window
moving in the depth direction, whose step size is set to be one fourth
of its height (0.325 m). The discretization of the extracted patches is
reconciled to 0.00508 m per pixel in depth and 1.4° per pixel in
azimuth via linear interpolation, generating 256 × 256 image log
patches. You et al. (2023) synthesize facies 0, 1, 2, and 4 as the
superposition of the convolution between various 2D features
(sinusoids, voids, etc.) and their feature maps to augment the train-
ing data, which improved the test accuracy by approximately 4%.
Hence, we generate 13; 824 synthetic image patches (evenly com-
posed of facies 0, 1, 2, and 4) to augment the training set in this
work as well.
After data preparation, we proceed with CL to address the pres-

ence of noisy labels. First, the k-fold cross-validation algorithm is
performed to obtain the out-of-sample predictions. To conduct
transfer learning, the encoding path of the SwinV2-Unet, excluding
the channel adapter, is initialized with the ImageNet-1K pretrained
SwinV2-T weights and remains fixed throughout the training,
whereas the rest of the SwinV2-Unet is initialized randomly and
optimized during the training process. The same SwinV2-Unet is
trained five times from this initial status. Specifically, in the kth
training, the kth fold is taken as the test set; the remaining folds
combined with the synthetic data are taken as the training set.
Following the approach of You et al. (2023), we employ weighted
cross-entropy as the training loss, which has been widely used to
measure the difference between the true and predicted probability
distributions. Classes 5–7, which exhibit lower certainty, are as-
signed a weight less than one (pless certain) to reflect the reduced con-
fidence in their manual labels. Next, the less certain classes are
converted to the corresponding certain classes (classes 0–2) for
training purposes. The loss function for a batch of data can be
expressed as

L ¼ −
P

N−1
i¼0

P
255
d¼0 widyid · log pidP
N−1
i¼0

P
255
d¼0 wid

; (3)

where the subscript id represents the parameters at the dth row of the
ith sample; w denotes the label certainty, which is pless certain for the
less certain classes and one for the certain classes; y and p represent
the label and prediction, respectively; and N is the batch size. The
SwinV2-Unet is optimized to minimize the loss function equation 3
with a widely used gradient descent algorithm, the AdamW

Table 4. The statistics of the field data from the labeled
wells.

Fold Number of segments Length (m) Facies ratio

0 96 374.4 4:3:3:3:1

1 96 374.4 3:5:4:5:1

2 96 374.4 2:3:2:2:1

3 96 374.4 4:3:2:2:1

4 94 366.6 2:4:2:4:1

Uncertain
section (class 8)

— 466.1 —

The facies ratio is the ratio of facies 0–4 with classes 5–7 combined to facies 0–2.
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optimizer (Loshchilov and Hutter, 2017). To accelerate training and
prevent overfitting, the loss of the test set is taken as the metric to
adjust the learning rate and to determine the early stopping point.
Specifically, the learning rate is halved when the test loss stops
decreasing in three consecutive epochs; the training is halted when
the test loss fails to decrease for six consecutive epochs after the
model has been trained for 42 epochs. As the training stops, the
model achieving the lowest test loss is retained to give out-of-sam-
ple predictions on the test set or the kth fold. Next, based on the
out-of-sample predictions on all labeled data and the manual labels,
we detect and prune label errors using the prune-by-noise-rate
approach.
After performing data cleaning, we apply the k-fold cross-valida-

tion algorithm to the cleaned data. We use the same transfer-learning
methods mentioned previously in the process. This approach ensures
that the models are trained and evaluated on multiple folds of the
data, improving the robustness and generalizability of the results.

RESULTS

In this section, we first present the results obtained from CL,
followed by the final training results using the cleaned data set.
In CL, the batch size and initial learning rate are determined

through trial and error. A batch size of 32 and an initial learning
rate of 0.0005 are chosen, as this combination results in a stable
training process. The less certain weight plesscertain is set to 0.5,
which has been determined to be the optimal value in the previous
work (You et al., 2023). The SwinV2-Unet model is trained on one
NVIDIA-A100-40 GB GPU, with an average training speed of ap-
proximately 4 min per epoch. The total training time for one iter-
ation of the k-fold cross validation is approximately 3 h with early
stopping. The learning curves of one iteration are shown in Appen-
dix C, which offers a detailed illustration of the model’s evolution.
The model’s performance is assessed using classification accuracy,
which represents the percentage of correct predictions out of all the
predictions made. In k-fold cross-validation, the accuracy achieved
in each iteration is aggregated to calculate the mean and standard
deviation, providing an overall performance measure. The average

training accuracy is 88%, with a standard deviation of 3%. As for
the test accuracy, the mean is 78%, with a standard deviation of 1%.
To better assess the generalizability of the model for this multi-

class classification task with imbalanced data, we aggregate all the
out-of-sample predictions across the five iterations and plot their
confusion matrices in Figure 2: the first matrix is normalized by
rows, and the second matrix is normalized by columns. The diago-
nal values of Figure 2a and 2b are the recall and precision of each
class, respectively. Particularly, the recall represents the proportion
of each actual facies to be accurately identified, whereas the preci-
sion represents the proportion of each predicted facies to be correct.
The F1 score, which is the geometric mean of the recall and pre-
cision, is another widely used metric that provides a balanced mea-
sure of the model’s accuracy by considering its ability to correctly
classify the positive instances (precision) and its ability to capture
all the positive instances (recall). The F1 scores for facies 0–4 are
0.79, 0.75, 0.75, 0.82, and 0.80, respectively. These scores suggest
that the model performs slightly better for facies 0, 3, and 4 than for
facies 1 and 2. The average F1 score over all classes is called the
macro F1 score, which quantifies the overall classification perfor-
mance of the model with one value. For the initial SwinV2-Unet
trained with noisy labels, the macro F1 score is 0.78.
Based on the out-of-sample predictions, the estimated joint dis-

tribution between the noisy labels and uncorrupted/true labels is
shown in Figure 3a. The prune-by-noise-rate approach prunes
11% of the manual labels from the training data set. The pruning
rates for each class are shown in Figure 3b. In general, the less cer-
tain classes 5–7 have significantly higher pruning rates than the
more certain classes 0–3, which aligns with our expectations. Class
4 exhibits a pruning rate of 20%, primarily due to the inherent chal-
lenge of detecting the artifacts with confidence, as they often coexist
with other facies. Furthermore, in Appendix D, we show six ran-
domly selected mislabeled patches, demonstrating the proficiency
of CL in detecting inaccurate labels. Specifically, the identified false
labels mainly pertain to low-quality images that lack distinct fea-
tures complying with the facies definition.
After data cleaning, the SwinV2-Unet is trained with the cleaned

data set using the k-fold cross-validation algorithm. In CL, the re-
maining labels are considered to be true. Hence,
the remaining less certain classes are weighted
equally with the other more certain classes by
setting the parameter pless certain to one. The batch
size and initial learning rate used in the CL phase
are maintained for this training. The training
speed remains 4 min per epoch using one NVI-
DIA-A100-40 GB GPU. Each iteration of the k-
fold cross-validation process takes approxi-
mately 3–4 h to complete. The learning curves
for one iteration are available in Appendix C.
Across the five iterations, the mean training ac-
curacy is measured to be 96% with a standard
deviation of 1%. On average, the test accuracy
reaches an impressive value of 89% with a stan-
dard deviation of 1%. Notably, the data cleaning
process has led to substantial improvements in
training and test accuracies, with gains of 8%
and 11%, respectively. Figure 4 shows the nor-
malized confusion matrices obtained from the
out-of-sample predictions. The achieved recalls

Figure 2. The normalized confusion matrices of all out-of-sample predictions obtained
in CL. (a) Row normalization: Each row of the matrix is independently normalized, and
the diagonal values indicate the recall for each class. (b) Column normalization: Each
column of the matrix is independently normalized, and the diagonal values represent the
precision of each class.
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and precisions are consistently high, exceeding 0.87 for all facies.
The corresponding F1 scores for facies 0–4 are 0.90, 0.87, 0.88,
0.91, and 0.91, respectively. The model’s macro F1 score averages
0.90, surpassing the initial model’s macro F1 score (trained with
noisy labels) by a significant margin of 0.12. Overall, the final
SwinV2-Unet model demonstrates exceptional generalizability,
delivering highly accurate classification results for the test data with
high recall and precision across all facies.
The classification capability of SwinV2-Unet is further analyzed

by visualizing its prediction results for multiple test sections.
Because SwinV2-Unet is specifically designed for depthwise facies
classification, its predictions may include ultrathin segments. To
avoid oversegmentation, segments with a thickness of fewer than
eight centimeters and an average probability of below 0.75 are con-
sidered unreliable. These segments are replaced with the nearest
facies predictions, yielding the final predictions. As shown in
Figure 5, the final predictions coincide well with the manual labels,
highlighting the high accuracy and strong generalizability of our
model. As described previously, the implementation of the
shifted-window-based self-attention mechanism in the SwinV2-
Unet enables the efficient learning of local-global representations.
This capability is particularly evident in the correct classification of
the large-scale stromatolite below line 2. Our model accurately clas-
sifies it as the chaotic facies, taking into account the localized
shrubby features and the larger concentric layering structure, in con-
trast to the previous Facies-Unet model (You et al., 2023) that solely
focuses on local features and misinterprets it as facies 0. Moreover,
the SwinV2-Unet accurately identifies some fine-scale facies that
have been overlooked in the manual labeling process. For instance,
the section between lines 4 and 5 appears transparent without any
visible layering. Our model correctly predicts it as facies 2, whereas
the human interpreter annotated it as facies 0 or 1. Fortunately, this
fake label (marked with purple) is detected and pruned by the CL
approach. In addition to addressing false labels, the CL process de-
tects segments that are challenging to classify due to low image
quality. Above line 1, the section displays faint, thin beddings
and shrubs typical of facies 0, but the strong noise makes it difficult
to classify with certainty. As a result, the manual labels of facies 4
and our model’s predictions of facies 0 seem plausible. Similarly,
the section above line 3 suffers from low resolution. It exhibits
vuggy and rough characteristics with traces of
laminations, resembling the predicted facies 0
in the same subplot. Therefore, our model’s pre-
diction is highly likely to be correct.
The uncertain sections, which may exhibit

high levels of noise, entangled features, or low
resolution, are used for the blind testing of our
model. In Figure 6, we present the classification
results of our model for three uncertain segments
obtained from different wells. The interpretation
of the first segment is hindered by its low reso-
lution. However, our model’s predictions show a
strong correlation with the image textures. The
smooth sections with clear continuous lamina-
tions across the wellbore are predicted as facies
1, whereas the smooth sections lacking clear
laminations are classified as facies 2. Moreover,
the rough, vuggy, and weakly laminated section
between lines 1 and 2 is appropriately classified

as facies 0. The second segment suffers from low-resolution and
vertical artifacts. It predominantly exhibits rough and vuggy tex-
tures, which our model correctly assigns to facies 0. In addition,

Figure 4. The normalized confusion matrices of all the out-of-sample predictions from
models trained with the cleaned data set: (a) row normalization and (b) column normali-
zation.

Figure 3. (a) The joint distribution between the observed noisy la-
bels and the true uncorrupted labels and (b) the percentage of the
pruned samples of each class. Here, “0” represents the preserved
samples, whereas “1” represents the pruned samples.
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Figure 5. The predictions given by the well-trained SwinV2-Unet for three test sections. (a–u) The static image, dynamic image, gamma-ray
log, raw DNN prediction, DNN probability, final prediction, and manual label. The vertical axis represents relative depth. The mean gamma-
ray log values for the manually labeled facies 0–2 are 20, 28, and 37, respectively, which are marked with the dashed black lines in the gamma-
ray log. The manual labels are updated with classes 5–7 added to classes 0–2. The label errors identified by the CL are annotated as −1 and
displayed in purple, with their original labels written next to them. The final prediction is obtained by replacing sections with an average DNN
probability below 0.75 and a thickness below 8 cm with the nearby facies.
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the chaotic portion with bright, irregular silicified strips between
lines 3 and 4 is reasonably predicted as facies 3. The third segment
is affected by the artifacts. The section below line 7 exhibits high-
angle fractures with a dip direction opposite to the local strata, along
with evident borehole breakout, both identified as artifact facies.
Furthermore, the section between lines 5 and 6 contains strong im-
prints of the logging tool, overlapping the high-angle fracture par-
allel to the one below. Hence, this section is also classified as facies
4 by our model. Overall, our model provides ra-
tional predictions for the low-quality uncertain
sections, serving as a valuable reference for hu-
man interpreters to make better judgments about
the facies.

DISCUSSION

In this study, we propose training a pure trans-
former-based model, the SwinV2-Unet, to pro-
vide depthwise facies classification for the
acoustic image logs from the Brazilian presalt re-
gion. We introduce a specially designed training
strategy that combines transfer learning and CL
to overcome the limitations of previous studies
(e.g., You et al., 2023), mainly limited general-
izability due to insufficient labeled data and
the presence of erroneous labels. Assessed with
the k-fold cross-validation algorithm, our final
SwinV2-Unet achieves a high classification ac-
curacy of 89% and an impressive macro F1 score
of 0.90 for out-of-sample predictions, demon-
strating the superior generalizability of our
model. Apart from the carefully labeled sections,
our model also offers reliable predictions for the
low-quality uncertain well sections from the la-
beled wells. Therefore, it can serve as a robust
reference for human interpreters in deciphering
the facies of the complex carbonate reservoirs.
Notably, our model outperforms the tedious and
laborious conventional manual classification
approach, offering higher levels of efficiency,
consistency, and spatial resolution. In addition,
it provides depthwise facies predictions along
with corresponding probabilities, which are valu-
able for uncertainty analysis. With access to
more training data, our model holds great poten-
tial to evolve into a real-time facies analysis tool
for complex image log data in the geologically
intricate Brazilian presalt region.
As mentioned previously, You et al. (2023)

achieve a classification accuracy of 77% for a
57.6 m test set based on the same Brazilian pre-
salt data. Building upon the advanced SwinV2-
Unet architecture and an improved training strat-
egy, we have significantly improved the test ac-
curacy for much larger test folds of 366.6 or
374.4 m in length, achieving an impressive aver-
age accuracy of 89%. It is important to explore
the individual effect of each operation, including
the use of the SwinV2-Unet, transfer learning,
and CL. The optimal experiment setting for

the raw data set, referred to as test 1 in Table 2, involves initializing
the encoding path of our model with pretrained SwinV2-T weights
from the ImageNet-1K data set and keeping them frozen during
training. Taking this optimal setting as the base model, we conduct
an ablation study by systematically disabling specific operations
while using the same k-fold cross-validation algorithm to ensure
a fair and unbiased comparison. The macro F1 score of the aggre-
gated out-of-sample predictions for the entire data set is used to

Figure 6. (a–r) The predictions given by the well-trained SwinV2-Unet for three un-
certain segments.
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measure the classification performance. If we allow the loaded pre-
trained weights to be updated during training, the number of train-
able parameters increases significantly from 14.16 to 41.34 million,
whereas the macro F1 score decreases slightly from 0.78 to 0.74.
This indicates that the pretrained weights can extract representative
features of the input images effectively, making it more efficient to
focus on training the channel adapter, the decoding path, and the
skip connections. By comparing test 3 with test 1, we observe a
notable increase in the macro F1 score of 0.08 through transfer
learning on the pretrained SwinV2-T weights from the Image-
Net-1K data set. Test 4 assesses the performance of the Facies-Unet
(You et al., 2023) on raw labels. Because the Facies-Unet is a small
model, its training speed is as high as 1.3 min/epoch. By substitut-
ing the Facies-Unet with the more advanced SwinV2-Unet, the
macro F1 score improves by 0.02, as demonstrated by tests 3
and 4. Following data cleaning based on the out-of-sample predic-
tions obtained in test 1, the subsequent round of training, denoted as
test 5, uses the clean data set. This CL strategy leads to a prominent
increase in the macro F1 score by 0.12 for the SwinV2-Unet. Like-
wise, the same CL algorithm is applied to the Facies-Unet. Based on
model predictions from test 4, 23% of the manual labels are iden-
tified as false labels, which is more than twice the number pruned by
the SwinV2-Unet (11%). This implies that the SwinV2-Unet is
more confident about its predictions than the Facies-Unet. Postdata
cleaning, the macro F1 score of the Facies-Unet rises to 0.86 with
the inclusion of the gamma-ray log data as an input channel and to
0.84 without it. This performance falls behind that of the SwinV2-
Unet model trained with clean data by 0.04 and 0.06, respectively.
Considering the more substantial removal of the data for the Facies-
Unet compared with the SwinV2-Unet, the Facies-Unet is antici-
pated to yield a lower score when trained with data cleaned by
the SwinV2-Unet. Thus, the superiority of the SwinV2-Unet over
the Facies-Unet is further amplified when coupled with CL. Overall,
the combination of an advanced neural network architecture and a
superior training strategy that incorporates transfer learning and CL
has led to a substantial improvement in our neural network’s per-
formance for facies classification.
The success of our training strategy holds profound implications.

First, the notable improvement achieved through transfer learning
and freezing the pretrained weights indicates the existence of under-
lying similarities between the borehole images and natural images,
despite their apparent dissimilarity to human eyes. This finding en-
courages us to leverage the wealth of publicly available pretrained
weights of cutting-edge deep-learning models trained on large-scale
benchmark data sets such as ImageNet for our geophysical appli-
cations, particularly rock image analysis. This approach not only
saves training time but also addresses a critical challenge faced
by ML studies in our field, namely the scarcity of labeled data. Fur-
thermore, the success of the CL method in our study suggests its
potential for human error estimation, offering an objective approach
to evaluate the labels made by human interpreters. This allows the
interpreters to meticulously examine and rectify any identified erro-
neous labels themselves. Through this iterative process, the accu-
racy and reliability of facies interpretations are significantly
enhanced, contributing to more precise and dependable results.
Facies-Unet (You et al., 2023) integrates gamma-ray logs as a

third input channel to supplement the static and dynamic image
patches, which is proven to increase the test accuracy by approx-
imately 2%. This enhancement in performance is consistently

observed for the Facies-Unet after data cleaning, as evidenced
by tests 6 and 7, presented in Table 2. In contrast, our SwinV2-Unet
exclusively uses image logs as inputs. As shown in Table 2, the
macro F1 score experiences a marginal decrease from 0.78 (test
1) to 0.77 (test 8) for the noisy raw labels when gamma-ray logs
are introduced as an additional input channel to our optimal experi-
ment settings. We also explore an alternative approach to incorpo-
rate gamma rays, which is to construct a simple four-layer 1D-CNN
to process the gamma-ray data and then fuse the outputs from the
1D-CNN and the SwinV2-Unet using a 1D convolutional layer to
generate the final predictions. However, as demonstrated by test 9 in
Table 2, the macro F1 score remains 0.78 with the use of a parallel
1D-CNN for gamma-ray analysis. Therefore, there is no observed
improvement by introducing the gamma-ray log as an additional
input to the SwinV2-Unet. Several factors may contribute to this
outcome. First, the SwinV2-Unet may already possess sufficient
power to infer facies solely from the major features of the facies,
specifically the visual patterns in the acoustic image logs, rendering
the use of gamma-ray logs redundant. Second, gamma-ray logs in-
herently possess lower spatial resolution than borehole image logs,
limiting their impact on image log segmentation. Furthermore, the
presence of measurement failures in the gamma-ray data, coupled
with potential depth misalignment between the gamma-ray logs and
image logs, underscores the importance of rectifying inaccuracies
and aligning their depths before integrating them into the model.
Finally, 1D CNN is limited in its capacity to handle long-range
dependence; hence, exploring the potential of long short-term
memory (Hochreiter and Schmidhuber, 1997) or transformer neural
networks for gamma-ray log analysis could be a promising avenue
for future research.
Apart from transfer learning, semisupervised learning is also

widely used to mitigate overfitting and enhance model performance
by using the labeled data to ground the predictions and using the
plentiful, low-cost, unlabeled data to learn the shape of the larger
data distribution (Zhu, 2005). As shown in Tables 3 and 4, we have
seven unlabeled wells along with 466.1 m uncertain sections from
the labeled wells that have not been used for the training of our
neural network. Hence, it is worthwhile to explore the use of the
unlabeled data set for our task. Among various semisupervised
learning approaches, the mean teacher method (Tarvainen and
Valpola, 2017) is a well-established method that involves the use
of two neural networks, one acting as a teacher and the other acting
as a student. Inspired by the finding that model weights averaged
over the training steps tend to be more accurate than the weights at
the last step (Polyak and Juditsky, 1992), Tarvainen and Valpola
(2017) construct the teacher model as the exponential moving aver-
age (EMA) of the student models over previous training steps. In
each iteration, the same batch of samples is augmented randomly
and then fed to the two neural networks. In addition to the classi-
fication loss calculated for the labeled samples, a consistency loss
(mostly the mean-squared error) measuring the distance between
the predictions of the two models is computed for all input samples.
Then, the loss function can be expressed as the weighted sum of the
classification and consistency losses. The weights of the student
model are updated with gradient descent algorithms to minimize
the training loss, whereas the teacher weights are updated as the
EMA of the student weights. In essence, the inclusion of a consis-
tency loss enforces that similar inputs are categorized into the same
class, thereby allowing the label of one example to help identify the
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labels of other similar examples. As shown in Table 2, we test the
effect of the mean teacher method in test 10. The inclusion of the
unlabeled data set slows down the training speed to 7.7 min/epoch,
whereas the macro F1 score stays the same as test 1, where the mean
teacher method is not enabled. Therefore, the mean teacher method
does not bring obvious improvement to the test accuracy on the la-
beled wells. This could be attributed to the inferior image quality of
the remaining unlabeled wells compared with the labeled data.
Moreover, the image logs from different wells always present dis-
tinct features on top of the basic characteristics of the five facies.
The combined factors of lower image quality in the unlabeled wells
and variations in image characteristics pose significant challenges in
improving the classification accuracy on the labeled wells with the
help of the unlabeled well logs. Therefore, the effectiveness of the
mean teacher method heavily depends on the quality and repre-
sentativeness of the unlabeled data in relation to the labeled data.
Table 2 demonstrates that test 5 achieves the highest accuracy for

out-of-sample predictions on the labeled wells. However, it is also
crucial to assess the performance of different models on the unla-
beled wells to evaluate their generalizability to new wells with
slightly different geologic and operational conditions. In general,
models trained on larger and more diverse data tend to exhibit
higher generalizability. Thus, we hypothesize that models trained
with the mean teacher method possess better generalizability to
new wells compared with models trained without it because the
mean teacher method allows the model to use the unlabeled data
set during training. To evaluate this hypothesis, we compare the pre-
diction results of tests 1 and 10 for the unlabeled wells, using the
results obtained from the optimal experiment, test 5, as the refer-
ence. Due to the length limit, we present the comparison of the three
models’ performance on two sample sections from the unlabeled
wells in Appendix E. After carefully reviewing the predictions
of the three models for all the unlabeled wells, we observe that tests
1 and 10 provide comparable predictions for the unlabeled wells,
whereas test 5 consistently performs the best overall. Therefore,
our initial conjecture that the mean teacher method enhances the
generalizability of our model is incorrect. This discrepancy pri-
marily stems from the inferior image quality of the seven unlabeled
wells, which contain numerous artifacts and noise and have low
resolution. Consequently, the teacher model cannot provide reliable
targets or pseudolabels for the unlabeled wells to guide the student
model, making it ineffective to improve the student model’s perfor-
mance on the unlabeled wells by enforcing the alignment of the
teacher and student model predictions with the consistency loss.
Furthermore, because the models’ performance on the unlabeled
wells correlates well with their performance on the labeled wells,
we can conclude that the model’s performance on test folds from the
labeled wells accurately reflects its generalizability to new wells.
Although our model has shown significant improvement in ac-

curacy and generalizability, it is important to acknowledge the chal-
lenges posed by the quality of the acoustic image logs. The acoustic
image logs contain widespread artifacts that would interfere with
the existing geologic features, hindering an accurate interpretation
of the acoustic image logs. In addition, the resolution of the image
logs may not always be sufficient to distinguish between different
facies, further complicating the task of determining the underlying
facies. Given the limited labeled data set and the high variability in
image quality, it is almost impossible to train a single end-to-end
neural network to distinguish the facies precisely and accurately

under the disturbance of the artifacts and inadequate resolution.
Although our model is capable of predicting the probability of each
facies at each depth, its assistance is limited to uncertainty analysis.
Therefore, we think it is essential to remove the artifacts beforehand
using either conventional image processing approaches or ML
methods. As for the low-resolution image logs, it can be beneficial
to train a superresolution neural network for the image logs, which
has been extensively studied in the computer vision community and
aimed to improve image resolution (Anwar et al., 2020). In our fu-
ture work, we plan to integrate these preprocessing steps, including
artifact removal and image resolution enhancement, into the inter-
pretation workflow and finally eliminate the impedance brought by
poor image quality.
Although our model has demonstrated strong generalization to

labeled wells and satisfactory performance on unlabeled wells,
we have to admit that its predictions still require further assessment
by experienced geologists, especially for low-quality data from new
wells. Nonetheless, our model significantly enhances and acceler-
ates the facies analysis process by providing real time, reasonable
initial facies predictions along with quantified probabilities, thereby
alleviating the heavy workload on geologists. Following the first
pass of automatic facies classification using our model, geologists
can rectify a subsection of the new well with reference to the initial
predictions. The corrected subsection, combined with sections show-
ing sufficiently high probabilities, can be used to update our model
through transfer learning. The updated model is poised to provide
better predictions for the new well as it has been exposed to portions
of the new data during training. With the ongoing accumulation of
labeled data during the model application phase, we can improve our
model’s performance through iterative updates using transfer learning
on the consistently expanding labeled data set. This iterative process
enhances the accuracy and applicability of our model to Brazilian
presalt data, gradually reducing human workloads, enhancing pro-
ductivity, and improving work efficiency over time.

CONCLUSION

In this work, we propose to enhance the automatic facies classi-
fication performance for the acoustic image logs from the Brazilian
presalt region in two key aspects. First, we adopt the advanced U-
shaped transformer, SwinV2-Unet, which integrates the strengths of
the Swin Transformer and U-Net architectures. Second, we enhance
the training strategy by incorporating transfer learning and CL tech-
niques to mitigate overfitting and address label errors. Our training
workflow involves two rounds of training using the k-fold cross-val-
idation algorithm. In the initial round, ML models are trained with
the original noisy labels, generating out-of-sample predictions used
for CL. In the second round, we train the final model with the
cleaned data set and assess its performance in an unbiased manner.
The labeled data set is randomly split into fivefold, with each fold
spanning 374.4 or 366.6 m, serving as the test set iteratively. Re-
markably, our approach achieves an impressive average accuracy of
89% and an unprecedentedly high macro F1 score of 0.90 for the
test folds. This surpasses the 68% classification accuracy and 0.68
macro F1 score obtained by the previous Facies-Unet when evalu-
ated under the same conditions (i.e., undergoing the same data
preparation and k-fold cross-validation processes but without trans-
fer or CL). Through an ablation study, we investigate the contribu-
tion of different operations, with the macro F1 score serving as the
evaluation metric. The results show that the substitution of U-Net
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with SwinV2-Unet, the inclusion of transfer learning, and the use of
CL techniques improve the macro F1 score by 0.02, 0.08, and 0.12,
respectively. Therefore, our modifications made in this study are
demonstrated to be highly effective. Furthermore, compared with
the manual labeling approach, our final facies classification model
exhibits superior performance in terms of efficiency, consistency,
and resolution. It also provides reasonable predictions for low-qual-
ity uncertain sections, offering valuable guidance for geologists to
make better judgments about the facies. In summary, we have de-
veloped a robust end-to-end facies classification model that exhibits
high accuracy, efficiency, and generalizability when applied to im-
age logs from the Brazilian presalt region, contributing significantly
to the field of automatic facies classification.
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APPENDIX A

WELL INFORMATION AND FIELD DATA
STATISTICS

Table 3 shows the general information of the well-log data pro-
vided by EMTEC. To conduct the k-fold cross-validation experi-
ment, the field data are divided into fivefold. Detailed statistics
of these fivefold, along with the uncertain section from the labeled
wells, are presented in Table 4.

APPENDIX B

SWIN TRANSFORMER BLOCKS

The basic mechanism constituting a Swin Transformer block is the
well-known self-attention mechanism proposed by Vaswani et al.
(2017). The first block of Figure B-1 shows the self-attention mecha-
nism within nonoverlapping windows. Given a sequence of 1D to-
kens as input, linear layers are used to generate the query, key, and
value vectors for each token. The correlation between the different

tokens is then computed to produce updated to-
kens. The query, key, and value vectors are repre-
sented as matricesQ;K; V ∈ RM2×d, whereM2 is
the number of patches in a window and d is the
query/key dimension. The mathematical operation
is expressed as

AttentionðQ;K; VÞ
¼ SoftMaxðQKT=

ffiffiffi
d

p
þ BÞV; (B-1)

where B ∈ RM2×M2

represents the relative distance
matrix between any two patches in a window.
The second and third blocks of Figure B-1 de-

pict two consecutive Swin Transformer blocks
that use different window partitioning strategies.
The first block uses a regular window partition-
ing strategy, starting from the top-left pixel, with
4 × 4 patches evenly split into 2 × 2 windows of
size 2 × 2 patches. In the subsequent block, the
windows are shifted by half the window size
(i.e., one patch) in both dimensions, resulting
in nine local windows of varied sizes. The
self-attention mechanism is consistently com-
puted within the local windows (marked with
red frames) in both Swin Transformer blocks.
This window-shifting scheme introduces connec-
tions between neighboring nonoverlapping win-
dows in the preceding layer.

APPENDIX C

LEARNING CURVES IN TRANSFER
LEARNING

In our proposed training workflow, two rounds
of k-fold cross-validation experiments are con-

Figure B-1. Illustration of the Swin Transformer blocks (Liu et al., 2021, 2022), featur-
ing the self-attention mechanism (SA) within a local window, window-based self-atten-
tion mechanism (W-SA), and shifted-window-based self-attention mechanism (SW-SA)
arranged from top to bottom. Each grid in the image corresponds to a pixel, and the
overall image is partitioned into 16 patches, each comprising 2 × 2 pixels. The shifting
window, highlighted by the red frames, is of size 2 × 2 patches.
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ducted on the prepared data. The initial training phase uses the
original noisy manual labels. The learning curves for the second
iteration, where fold 1 is designated as the test set, and the remain-
ing folds form the training set, are illustrated with dashed curves in
Figure C-1. Leveraging transfer learning, the training and test ac-
curacies reach 88% and 74%, separately, after just one epoch. The

optimal model is chosen based on the lowest test loss. Prior to cor-
recting label errors, a significant (more than 15%) difference exists
between the training and validation accuracies for the best model,
underscoring the need for further improvements in model general-
izability. After data cleaning via CL, the learning curves for the
same model structure, initialized with the same pretrained weights

Figure C-1. Learning curves for the second itera-
tion of the k-fold cross-validation process before
and after data cleaning, wherein fold 1 serves as
the test set and the remaining folds constitute
the training set. (a and b) The evolution of loss
and accuracy across different epochs, respectively.
The dashed curves represent the learning curves
before data cleaning, whereas the solid curves de-
pict the curves after the cleaning process.

Figure D-1. (a–d) Examples of the mislabeled im-
age log patches identified through CL. The label
certainty panel reflects the human interpreter’s
confidence in assigned labels. A certainty value
of 0.5 pertains to the less certain classes (5–7),
whereas a value of 1.0 corresponds to the certain
classes (0–4).
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(the ImageNet-1K-pretrained SwinV2-T weights), are presented as
solid curves in Figure C-1. The learning curves for the cleaned data
exhibit trends similar to those trained with noisy labels, with the
respective loss curves shifting downward and the accuracy curves
shifting upward, indicating better classification performance. More-
over, the gap between the training and validation accuracies of the
best model narrows to approximately 10%, emphasizing the en-
hanced generalizability achieved through CL.

APPENDIX D

CL DETECTED MISLABELED IMAGE LOG
SAMPLES

Figure D-1 shows six randomly selected instances of the image
log patches with false manual labels, as identified through CL. In
general, these patches exhibit contamination from artifacts or low
resolution, resulting in ambiguous feature patterns that do not align
clearly with the defined facies. Consequently, most of these patches
are assigned to a class with low certainty.
The first example contains widespread vugs that follow a sinus-

oidal trend but with no distinct laminations or shrubby features,
making the manual label of facies 0 unsupported. The second patch
does not contain complete laminations across the wellbore, confirm-
ing that the classification of facies 1 is inaccurate. The third patch
contains various artifacts against a bright background, making it
unconvincing to assign it to facies 2, which typically displays faint
laminations or transparent beds. The fourth and fifth patches exhibit
similar characteristics but are assigned to different classes, reflect-
ing the inevitable inconsistency in manual labels. In both patches,
traces of laminations and shrubs coexist with vertical artifacts, sug-
gesting that they may belong to facies 0 in addition to facies 3 and 4.
Consequently, it is challenging to classify both patches into any fa-
cies with sufficient confidence, and they might be better suited for
the uncertain section category. The last patch presents scattered
vugs and bright spots without clear layering or shrubs, diminishing
the credibility of the corresponding labels, facies 0 and 2.

In conclusion, CL proves effective in detecting the inaccurate la-
bels in our experiment, as evidenced by the randomly chosen sam-
ples. The detected false labels predominantly relate to low-quality
images lacking the distinct features of the defined facies. Although
CL successfully pinpoints these inaccuracies, the true labels for the
identified false ones remain uncertain. Therefore, rather than cor-
recting them, we opt to prune the false labels from the training data.

APPENDIX E

MODEL PERFORMANCE ON UNLABELED WELLS

We compare the facies predictions given by the SwinV2-Unet
models obtained in tests 1, 5, and 10 for two sections from the un-
labeled wells.
As for the first section shown in Figure E-1, the predictions given

by the three models primarily vary between lines 1 and 5. The key
difference between facies 1 and facies 2 lies in the presence or ab-
sence of clear, complete laminations across the wellbore. We observe
clear, continuous laminations between lines 1 and 2 as well as be-
tween lines 3 and 4, indicating that these two sections belong to facies
1. Tests 5 and 10 correctly classify these two sections as facies 1,
whereas test 1 incorrectly predicts them as facies 2. In general,
for the section between lines 1 and 5, test 1 tends to underestimate
facies 1, test 10 tends to overestimate facies 1, and test 5 consistently
provides the most reliable results. In addition, test 10 identifies a pos-
sible presence of facies 0 between lines 4 and 5, but this seems un-
reliable as we do not observe visible shrubby features. The associated
probability assigned by the neural network is also very low, at ap-
proximately 0.5. Overall, test 10 performs slightly better than test
1 in this example, whereas test 5 achieves the best performance.
For the second example shown in Figure E-2, test 1 performs the

best in identifying the borehole breakouts, whereas test 10 fails to
detect any of them. Test 5 identifies most of the borehole breakouts,
although it is slightly less accurate than test 1. Specifically, the sec-
tion between lines 1 and 2 is incorrectly predicted as facies 0 in test
5 due to the influence of the ambiguous small-scale v-shape
patterns.

Figure E-1. (a–i) Comparison of the predictions given by tests 1, 5, and 10 for a section from the unlabeled wells.

16 You and Li



REFERENCES

Akbar, M., B. Vissapragada, A. H. Alghamdi, D. Allen, M. Herron, A. Car-
negie, D. Dutta, J.-R. Olesen, R. Chourasiya, D. Logan, and D. Stief,
2000, A snapshot of carbonate reservoir evaluation: Oilfield Review,
12, 20–21.

Al-Sit, W., W. Al-Nuaimy, M. Marelli, and A. Al-Ataby, 2015, Visual tex-
ture for automated characterisation of geological features in borehole tele-
viewer imagery: Journal of Applied Geophysics, 119, 139–146, doi: 10
.1016/j.jappgeo.2015.05.015.

ANP, 2023, Painel dinâmico de produção de petróleo e gás natural, https://
app.powerbi.com/view?r=eyJrIjoiNzVmNzI1
MzQtNTY1NC00ZGV
hLTk5N2ItNzBkMDN
hY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YT
YtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9, accessed 6 June 2023.

Anwar, S., S. Khan, and N. Barnes, 2020, A deep journey into super-res-
olution: A survey: ACM Computing Surveys, 53, 1–34, doi: 10.1145/
3390462.

Basu, T., R. Dennis, B. Al-Khobar, W. Al Awadi, S. Isby, E. Vervest, and R.
Mukherjee, 2002, Automated facies estimation from integration of core,
petrophysical logs, and borehole images: Presented at the Annual Con-
vention, AAPG.

Branco, C. C., and J. O. de Sant'Anna Pizarro, 2012, Challenges in imple-
menting an EOR project in the pre-salt province in deep offshore Brasil:
EOR Conference at Oil and Gas West Asia, SPE, doi: 10.2118/155665-
MS.

Cao, H., Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M.Wang, 2022,
Swin-Unet: Unet-like pure transformer for medical image segmentation:
European Conference on Computer Vision, Springer, 205–218.

Chai, H., N. Li, C. Xiao, X. Liu, D. Li, C. Wang, and D. Wu, 2009, Au-
tomatic discrimination of sedimentary facies and lithologies in reef-bank
reservoirs using borehole image logs: Applied Geophysics, 6, 17–29, doi:
10.1007/s11770-009-0011-4.

da Costa Fraga, C. T., A. C. Capeleiro Pinto, C. C. M. Branco, J. O. de Sant’
Anna Pizarro, and C. A. da Silva Paulo, 2015, Brazilian pre-salt: An
impressive journey from plans and challenges to concrete results: Off-
shore Technology Conference, doi: 10.4043/25710-MS.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 2009, Image-
Net: A large-scale hierarchical image database: IEEE Conference on
Computer Vision and Pattern Recognition, 248–255.

Dias, L. O., C. R. Bom, E. L. Faria, M. B. Valentín, M. D. Correia, P. Márcio,
P. Marcelo, and J. M. Coelho, 2020, Automatic detection of fractures and
breakouts patterns in acoustic borehole image logs using fast-region con-
volutional neural networks: Journal of Petroleum Science and Engineer-
ing, 191, 107099, doi: 10.1016/j.petrol.2020.107099.

Donselaar, M. E., and J. M. Schmidt, 2005, Integration of outcrop and bore-
hole image logs for high-resolution facies interpretation: Example from a
fluvial fan in the Ebro Basin, Spain: Sedimentology, 52, 1021–1042, doi:
10.1111/j.1365-3091.2005.00737.x.

Dubois, M. K., G. C. Bohling, and S. Chakrabarti, 2007, Comparison of four
approaches to a rock facies classification problem: Computers & Geosci-
ences, 33, 599–617, doi: 10.1016/j.cageo.2006.08.011.

Dunham, R. J., 1962, Classification of carbonate rocks according to depo-
sitional textures: AAPG.

Gupta, K. D., V. Vallega, H. Maniar, P. Marza, H. Xie, K. Ito, and A. Abu-
bakar, 2019, A deep-learning approach for borehole image interpretation:
60th Annual Logging Symposium, SPWLA, Extended Abstracts, doi: 10
.30632/T60ALS-2019_BB.

Hall, B., 2016, Facies classification using machine learning: The Leading
Edge, 35, 906–909, doi: 10.1190/tle35100906.1.

Hall, J., M. Ponzi, M. Gonfalini, and G. Maletti, 1996, Automatic extraction
and characterisation of geological features and textures front borehole im-
ages and core photographs: 37th Annual Logging Symposium, SPWLA,
Extended Abstracts, SPWLA-1996-CCC.

Hastie, T., R. Tibshirani, and J. Friedman, 2009, The elements of statistical
learning: Data mining, inference, and prediction: Springer.

Hochreiter, S., and J. Schmidhuber, 1997, Long short-term memory: Neural
Computation, 9, 1735–1780, doi: 10.1162/neco.1997.9.8.1735.

Imamverdiyev, Y., and L. Sukhostat, 2019, Lithological facies classification
using deep convolutional neural network: Journal of Petroleum Science
and Engineering, 174, 216–228, doi: 10.1016/j.petrol.2018.11.023.

Jiang, J., R. Xu, S. C. James, and C. Xu, 2021, Deep-learning-based vuggy
facies identification from borehole images: SPE Reservoir Evaluation &
Engineering, 24, 250–261, doi: 10.2118/204216-PA.

Lai, J., G. Wang, S. Wang, J. Cao, M. Li, X. Pang, C. Han, X. Fan, L. Yang,
Z. He, and Z. Qin, 2018, A review on the applications of image logs in
structural analysis and sedimentary characterization: Marine and Petro-
leum Geology, 95, 139–166, doi: 10.1016/j.marpetgeo.2018.04.020.

Lima, L., N. Bize-Forest, A. Evsukoff, and R. Leonhardt, 2019, Unsuper-
vised deep learning for facies pattern recognition on borehole images:
Offshore Technology Conference.

Liu, Z., H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L.
Dong, F. Wei, and B. Guo, 2022, Swin transformer V2: Scaling up capac-
ity and resolution: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 12009–12019.

Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, 2021,
Swin transformer: Hierarchical vision transformer using shifted windows:
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, 10012–10022.

Loshchilov, I., and F. Hutter, 2017, Decoupled weight decay regularization:
arXiv preprint, doi: 10.48550/arXiv.1711.05101.

Muniz, M., and D. Bosence, 2015, Pre-salt microbialites from the Campos
Basin (offshore Brazil): Image log facies, facies model and cyclicity in
lacustrine carbonates: Geological Society, London, Special Publications,
221–242.

Northcutt, C. G., L. Jiang, and I. L. Chuang, 2021, Confident learning: Es-
timating uncertainty in dataset labels: Journal of Artificial Intelligence
Research, 70, 1373–1411, doi: 10.1613/jair.1.12125.

Oquab, M., L. Bottou, I. Laptev, and J. Sivic, 2014, Learning and transfer-
ring mid-level image representations using convolutional neural

Figure E-2. (a–i) Comparison of the predictions given by tests 1, 5, and 10 for a section from the unlabeled wells.

SwinV2-Unet for image log classification 17

http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
http://dx.doi.org/10.1016/j.jappgeo.2015.05.015
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
https://app.powerbi.com/view?r=eyJrIjoiNzVmNzI1MzQtNTY1NC00ZGVhLTk5N2ItNzBkMDNhY2IxZTIxIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9
http://dx.doi.org/10.1145/3390462
http://dx.doi.org/10.1145/3390462
http://dx.doi.org/10.1145/3390462
http://dx.doi.org/10.2118/155665-MS
http://dx.doi.org/10.2118/155665-MS
http://dx.doi.org/10.2118/155665-MS
http://dx.doi.org/10.1007/s11770-009-0011-4
http://dx.doi.org/10.1007/s11770-009-0011-4
http://dx.doi.org/10.4043/25710-MS
http://dx.doi.org/10.4043/25710-MS
http://dx.doi.org/10.1016/j.petrol.2020.107099
http://dx.doi.org/10.1016/j.petrol.2020.107099
http://dx.doi.org/10.1016/j.petrol.2020.107099
http://dx.doi.org/10.1016/j.petrol.2020.107099
http://dx.doi.org/10.1016/j.petrol.2020.107099
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1111/j.1365-3091.2005.00737.x
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.1016/j.cageo.2006.08.011
http://dx.doi.org/10.30632/T60ALS-2019_BB
http://dx.doi.org/10.30632/T60ALS-2019_BB
http://dx.doi.org/10.1190/tle35100906.1
http://dx.doi.org/10.1190/tle35100906.1
http://dx.doi.org/10.1190/tle35100906.1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.1016/j.petrol.2018.11.023
http://dx.doi.org/10.2118/204216-PA
http://dx.doi.org/10.2118/204216-PA
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.1016/j.marpetgeo.2018.04.020
http://dx.doi.org/10.48550/arXiv.1711.05101
http://dx.doi.org/10.48550/arXiv.1711.05101
http://dx.doi.org/10.48550/arXiv.1711.05101
http://dx.doi.org/10.48550/arXiv.1711.05101
http://dx.doi.org/10.1613/jair.1.12125
http://dx.doi.org/10.1613/jair.1.12125
http://dx.doi.org/10.1613/jair.1.12125
http://dx.doi.org/10.1613/jair.1.12125


networks: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1717–1724.

Parker, S. P., 1984, McGraw-Hill concise encyclopedia of science & tech-
nology: McGraw-Hill.

Polyak, B. T., and A. B. Juditsky, 1992, Acceleration of stochastic approxi-
mation by averaging: SIAM Journal on Control and Optimization, 30,
838–855, doi: 10.1137/0330046.

Prensky, S. E., 1999, Advances in borehole imaging technology and appli-
cations: Geological Society, London, Special Publications, 1–43.

Ronneberger, O., P. Fischer, and T. Brox, 2015, U-Net: Convolutional net-
works for biomedical image segmentation: 18th International Conference
on Medical Image Computing and Computer-Assisted Intervention-MIC-
CAI 2015, Springer, 234–241.

Tarvainen, A., and H. Valpola, 2017, Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learn-
ing results: Advances in Neural Information Processing Systems.

Valentín, M. B., C. R. Bom, J. M. Coelho, M. D. Correia, P. Márcio, P.
Marcelo, and E. L. Faria, 2019, A deep residual convolutional neural net-
work for automatic lithological facies identification in Brazilian pre-salt
oilfield wellbore image logs: Journal of Petroleum Science and Engineer-
ing, 179, 474–503, doi: 10.1016/j.petrol.2019.04.030.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, 2017, Attention is all you need: Advances in
Neural Information Processing Systems.

Wilson, M. E., D. Lewis, D. Holland, L. Hombo, and A. Goldberg, 2013,
Development of a Papua New Guinean onshore carbonate reservoir: A com-
parative borehole image (FMI) and petrographic evaluation: Marine and
Petroleum Geology, 44, 164–195, doi: 10.1016/j.marpetgeo.2013.02.018.

Yang, J., X. Wu, Z. Bi, and Z. Geng, 2023, A multi-task learning method for
relative geologic time, horizons, and faults with prior information and
transformer: IEEE Transactions on Geoscience and Remote Sensing,
61, 5907720, doi: 10.1109/TGRS.2023.3264593.

Yang, S., Y. Wang, I. Le Nir, and A. He, 2020, Ai-boosted geological facies
analysis from high-resolution borehole images: 61st Annual Logging
Symposium, SPWLA, Extended Abstracts.

Ye, S.-J., P. Rabiller, and N. Keskes, 1998, Automatic high resolution texture
analysis on borehole imagery: 39th Annual Logging Symposium,
SPWLA, Extended Abstracts.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson, 2014, How transferable are
features in deep neural networks? Advances in Neural Information
Processing Systems.

You, N., E. Li, and A. Cheng, 2023, Automatic facies classification from
acoustic image logs using deep neural networks: Interpretation, 11,
no. 2, T441–T456, doi: 10.1190/INT-2022-0069.1.

Zhu, X. J., 2005, Semi-supervised learning literature survey: Technical
report, Computer Sciences, University of Wisconsin-Madisoa.

Biographies and photographs of the authors are not available.

18 You and Li

http://dx.doi.org/10.1137/0330046
http://dx.doi.org/10.1137/0330046
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.petrol.2019.04.030
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1016/j.marpetgeo.2013.02.018
http://dx.doi.org/10.1109/TGRS.2023.3264593
http://dx.doi.org/10.1109/TGRS.2023.3264593
http://dx.doi.org/10.1109/TGRS.2023.3264593
http://dx.doi.org/10.1109/TGRS.2023.3264593
http://dx.doi.org/10.1190/INT-2022-0069.1
http://dx.doi.org/10.1190/INT-2022-0069.1
http://dx.doi.org/10.1190/INT-2022-0069.1

